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The Total Synthesis of Tubulysin D
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The tubulysins, first isolated by 'Hle from myxobacterial culture Mep lle Tuv Tup
broths! are potential anticancer agents having exceptionally potent 3 /L |
cell growth inhibitory activity that exceeds the epothilones, vin- " o§ oo o
blastine, and taxol by a factor of 20- to 1000-fold. While the (N\K”NQLNL'\(N N
biosynthesig,mechanisni,and anticancer activityof the tubulysins o LT s
have intensively been investigated, and despite a number of active ) Q COM
synthetic effort$, none of the tubulysins containing the essential 0

N,O-acetal has yet yielded to total synthesidere we report the ~ Figure 1. Tubulysin D @).
first total synthesis of tubulysin D1j through the development
and application oftert-butanesulfinamide methods. An efficient

scheme for introducing and carrying forward the highly labl|©-
acetal functionality was essential for completing the synthesis. / a ?s? b
Tubulysin D can be dissected into four amino acid fragmentbi- N )J\ 55% N 100% CirteN
S. CO,Me ° °
C02 COZH
3 4

Scheme 12

methyl pipecolic acid (Mep), isoleucine, tubuvaline (Tuv), and ﬁ ~o Me

tubuphenylalanine (Tup). Tuv and Tup each incorporate two 2

stereocenters presented in a 1,3-relationship, and both represent 2Reagents and conditions: (a) SyliBr, H,0, THF,—78°C; (b) HCI,
excellent synthesis targets for the developmertedfbutanesulfi- ~ dioxane/HO, A.

namide methods. Th®-acyl N,O-acetal functionality present on  gopeme 22
the Tuv fragment constitutes a key challenge in the synthesis of

because this functionality, which has very rarely been observed in I " 1 o] o]
natural products, is reported to be quite labile to both acidic and pl( _a, N + HJ\//N])Ll OMe —»
basic reaction condition'sAppropriate protecting group selection S Lrsx\o s 90%

and staging of the incorporation of thEO-acetal functionality are
therefore critical to the successful synthesislof

5 6
The synthesis of Tup was accomplished in just three steps from Iji(“ o b ; I/?i(N o)
commercially available material (Scheme 1). The key step was a Y rr ov \E O
Lr <0

. . . 88%
Sml-mediated reductive coupling of methyl methacrylate and

phenylacetaldiming, which was prepared by condensation R)-( 7 . 100%]: 8, P=1BuSO
tert-butanesulfinamide and phenylacetaldehyde in 84% Yiglde 9, P=HHCl
asymmetric coupling of-substituteda,S-unsaturated carbonyl 2 Reagents and conditions: (a) LDA, CITi(cRr), ether,—78 °C; (b)

compounds and imines has not previously been rep8rtedide NaBHj, Ti(OEt), THF, —78 °C; (c) HCI, dioxane/MeOH.

range of solvents and additives were investigated, with be® H  titanjum counterion with ether as the solvent. Under these condi-
and LiBr proving to be of critical importance for achieving a high  tions, 7 was obtained as a single diastereomer in 90% yield after
yield (99%) and good selectivity (80:15:3:2). Other methacrylate chromatography. Stereoselective reduction 7ofwas next ac-
derivatives, such as benzyl tert-butyl esters, gave significantly ~ complished using conditions that we had previously reported for
lower selectivity (data not shown). Chromatographygfrovided the one-pot stereoselective reductive amination of ketonegevith
diastereomerically pure material in 55% yield with the relative and butanesulfinamidé? Performing the reduction at low temperature
absolute stereochemistry established by X-ray crystallographic eliminated competitive reduction of the methyl ester and provided
analysis. Heatin@ in aqueous HCI resulted in concomitant ester the desired 1,3-amino alcohol with 91:9 dr. After chromatography,

hydrolysis and sulfinyl cleavage to give amine hydrochlodda 8 was isolated in diastereomerically pure form in 88% yield.
quantitative yield. Treatment with HCI in MeOH then provided the amine hydrochlo-
The convergent synthesis of Tuv (Scheme 2) was accomplishedride 9 in near quantitative yield. X-ray crystal structure analysis of
by addition of the metalloenamine derived from ketimifi¢o the bispara-bromobenzoyl adduct d® confirmed the predicted
thiazoline aldehyd®, which was prepared in four steps and 67% sense of induction for both the metalloenamine addition and imine
overall yield from diethoxyacetonitrile by known methddsne reduction steps.
previously reported on highly stereoselectNesulfinyl metalloe- To set the stage foN,O-acetal incorporationp-azido acid
namine additions to aldehydes using zinc and magnesium counte-chloride10' was coupled with the Tuv intermedie@én 93% yield
rions! but with aldehyde substra& the addition product was (Scheme 3). The azide masking group was selected over much more
obtained with very poor addition diastereoselectivitiesl(l). common carbamate-based amine protecting groups to enable

Gratifyingly, after evaluating a number of different counterions and selective introduction of thi,0-acetal on the Tuv amide nitrogéh.
solvents, high addition selectivity (92:8) could be achieved by After protection of the secondary alcohol with TESOTf to provide
employing the highly covalent and coordinatively unsaturated dipeptidel2in 98% overall yield N-alkylation with chloromethyl
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aReagents and conditions: (aPrEtN, CHCly; (b) TESOTI, lutidine,
CH.Cly; (c) KHMDS, THF, —45 °C, then CICHOCOCHCH(CH); (d)
Mep pentafluorophenyl ester,,HPd/C, EtOAc; (e) AcCOH/THF/RD; (f)
MesSnOH, CI(CH).Cl, 60 °C.
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1, R = acetyl (tubulysin D)

a2 Reagents and conditions: (a) pentafluorophenol, DIC,@H#i (b) 4,
i-PREtN, DMF; (c) acetic anhydride, pyridine, thernn®/dioxane.

for the synthesis of Tup and Tuv and conditions for reducing
(Scheme 23! The synthesis and biological activity of analogues
will be reported in due course.
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were evaluated with KHMDS in THF providing the highest yield
(73%). The alkylation reaction proved to be very sensitive to sterics.
For example, in investigations of alcohol protecting groups, we
found that<10% alkylation occurred when the TES group was

of the absolute configurations dfand9.

Supporting Information Available: Complete experimental details
and spectral data for all compounds described (PDF, CIF). This material
is available free of charge via the Internet at http:/pubs.acs.org.

replaced by a TIPS group. The azide served as an ideal masking

group not only because it prevented Iealkylation but also
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